Manganese

Manganese is a metal with important industrial metal alloy uses, particularly in stainless steels.

Historically, manganese is named for various black minerals (such as pyrolusite) from the same region of Magnesia in Greece which gave names to similar-sounding magnesium, Mg, and magnetite, an ore of the element iron, Fe. By the mid-18th century, Swedish chemist Carl Wilhelm Scheele had used pyrolusite to produce chlorine. Scheele and others were aware that pyrolusite (now known to be manganese dioxide) contained a new element, but they were not able to isolate it. Johan Gottlieb Gahn was the first to isolate an impure sample of manganese metal in 1774, by reducing the dioxide with carbon.

Manganese phosphating is used as a treatment for rust and corrosion prevention on steel. Depending on their oxidation state, manganese ions have various colors and are used industrially as pigments. The permanganates of alkali and alkaline earth metals are powerful oxidizers. Manganese dioxide is used as the cathode (electron acceptor) material in standard and alkaline disposable dry cells and batteries.

In biology, manganese ions function as cofactors for a large variety of enzymes with many functions. Manganese enzymes are particularly essential in detoxification of superoxide free radicals in organisms that must deal with elemental oxygen. Manganese also functions in the oxygen-evolving complex of photosynthetic plants. The element is a required trace mineral for all known living organisms. In larger amounts, and apparently with far greater activity by inhalation, manganese can cause a poisoning syndrome in mammals, with neurological damage which is sometimes irreversible.

Manganese makes up about 1000 ppm (0.1%) of the Earth's crust, making it the 12th most abundant element there. Soil contains 7–9000 ppm of manganese with an average of 440 ppm. Seawater has only 10 ppm manganese and the atmosphere contains 0.01 µg/m3. Manganese occurs principally as pyrolusite (MnO2), braunite, (Mn2+Mn3+6)(SiO12),[20] psilomelane (Ba,H2O)2Mn5O10, and to a lesser extent as rhodochrosite (MnCO3).

Applications

Manganese has no satisfactory substitute in its major applications, which are related to metallurgical alloy use. In minor applications, (e.g., manganese phosphating), zinc and sometimes vanadium are viable substitutes. In disposable battery manufacture, standard and alkaline cells using manganese will be generally replaced in the future with lithium battery technology.

Steel

Manganese is essential to iron and steel production by virtue of its sulfur-fixing, deoxidizing, and alloying properties. Steelmaking, including its ironmaking component, has accounted for most manganese demand, presently in the range of 85% to 90% of the total demand. Among a variety of other uses, manganese is a key component of low-cost stainless steel formulations.

Small amounts of manganese improve the workability of steel at high temperatures, because it forms a high melting sulfide and therefore prevents the formation of a liquid iron sulfide at the grain boundaries. If the manganese content reaches 4%, the embrittlement of the steel becomes a dominant feature. The embrittlement decreases at higher manganese concentrations and reaches an acceptable level at 8%. Steel containing 8 to 15% of manganese can have a high tensile strength of up to 863 MPa. Steel with 12% manganese was used for British steel helmets. This steel composition was discovered in 1882 by Robert Hadfield and is still known as Hadfield steel.

Aluminium alloys

The second large application for manganese is as alloying agent for aluminium. Aluminium with a manganese content of roughly 1.5% has an increased resistance against corrosion due to the formation of grains absorbing impurities which would lead to galvanic corrosion. The corrosion-resistant aluminium alloys 3004 and 3104 with a manganese content of 0.8 to 1.5% are the alloys used for most of the beverage cans. Before year 2000, in excess of 1.6 million tonnes have been used of those alloys; with a content of 1% manganese, this amount would need 16,000 tonnes of manganese.

Other uses

Methylcyclopentadienyl manganese tricarbonyl is used as an additive in unleaded gasoline to boost octane rating and reduce engine knocking. The manganese in this unusual organometallic compound is in the +1 oxidation state.

Manganese oxide (manganese dioxide, MnO2) is used as a reagent in organic chemistry for the oxidation of benzylic alcohols (i.e. adjacent to an aromatic ring). Manganese dioxide has been used since antiquity to oxidatively neutralize the greenish tinge in glass caused by trace amounts of iron contamination. MnO2 is also used in the manufacture of oxygen and chlorine, and in drying black paints. In some preparations, it is a brown pigment that can be used to make paint and is a constituent of natural umber.

Manganese oxide was used in the original type of dry cell battery as an electron acceptor from zinc, and is the blackish material found when opening carbon–zinc type flashlight cells. The manganese dioxide is reduced to the manganese oxide-hydroxide MnO(OH) during discharging, preventing the formation of hydrogen at the anode of the battery.
MnO2 + H2O + -e → MnO(OH) + OH−

The same material also functions in newer alkaline batteries (usually battery cells), which use the same basic reaction, but a different electrolyte mixture. In 2002, more than 230,000 tons of manganese dioxide was used for this purpose.

The metal is very occasionally used in coins; until 2000, the only United States coin to use manganese was the "wartime" nickel from 1942–1945. An alloy of 75% copper and 25% nickel was traditionally used for the production of nickel coins. However, because of shortage of nickel metal during the war, it was substituted by more available silver and manganese, thus resulting in an alloy of 56% copper, 35% silver and 9% manganese. Since 2000, dollar coins, for example the Sacagawea dollar and the Presidential $1 coins, are made from a brass containing 7% of manganese with a pure copper core. In both cases of nickel and dollar, the use of manganese in the coin was to duplicate the electromagnetic properties of a previous identically sized and valued coin, for vending purposes. In the case of the later U.S. dollar coins, the manganese alloy was an attempt to duplicate properties of the copper/nickel alloy used in the previous Susan B. Anthony dollar.

Manganese compounds have been used as pigments and for the coloring of ceramics and glass. The brown color of ceramic is sometimes based on manganese compounds.[38] In the glass industry, manganese compounds are used for two effects. Manganese reacts with iron to induce a strong green color in glass by forming less-colored iron and slightly pink manganese, compensating for the residual color of the iron Larger amounts of manganese are used to produce pink colored glass.


For all your needs Manganese ore, please complete the form below.
FORM